
Optimizing Context-Enhanced Relational Joins
Viktor Sanca

EPFL
Lausanne, Switzerland

viktor.sanca@epfl.ch

Manos Chatzakis†
EPFL

Lausanne, Switzerland
emmanouil.chatzakis@epfl.ch

Anastasia Ailamaki∗
EPFL, Google

Switzerland, USA
anastasia.ailamaki@epfl.ch

Abstract—Collecting data, extracting value, and combining
insights from relational and context-rich multi-modal sources
in data processing pipelines presents a challenge for traditional
relational DBMS. While relational operators allow declarative
and optimizable query specification, they are limited to data
transformations unsuitable for capturing or analyzing context.
On the other hand, representation learning models can map
context-rich data into embeddings, allowing machine-automated
context processing but requiring imperative data transformation
integration with the analytical query.
To bridge this dichotomy, we present a context-enhanced rela-
tional join and introduce an embedding operator composable
with relational operators. This enables hybrid relational and
context-rich vector data processing, with algebraic equivalences
compatible with relational algebra and corresponding logical and
physical optimizations. We investigate model-operator interaction
with vector data processing and study the characteristics of
the E-join operator. Using an example of string embeddings,
we demonstrate enabling hybrid context-enhanced processing on
relational join operators with vector embeddings. The importance
of holistic optimization, from logical to physical, is demonstrated
in an order of magnitude execution time improvement.

Index Terms—analytics, vector embeddings, AI for database
systems, query optimization, hardware-conscious processing

I. INTRODUCTION

Relational databases allow declarative query specification
and abstractions for logical and physical query plan opti-
mizations. These optimizations include operator reordering via
algebraic equivalences and heuristics and instantiating opera-
tors for resource-efficient and hardware-conscious execution
on modern hardware. This allows ad-hoc query specification
by abstracting out significant implementation details from
the user and end-to-end optimization. As the main goal of
relational analytical databases is to provide abstractions to
large-scale processing and extraction of value from the data of
interest, relational databases are designed for data types where
a procedural way to process the data is possible to precisely
specify, such as aggregating numerical values or processing
strings with a well-specified pattern.

Still, many data sources are unsuitable for processing in a
relational database and are typically only stored serialized in
binary formats. These include documents, text, images, and
other data sources of increasing value, driven by the advent
of the Internet and mobile devices and services such as social
media. Such data has a lot of human-understandable contexts:

†
Author contributed during an internship at DIAS lab, EPFL.∗
Work done in its entirety at EPFL.

User

Intermediate
Data/Results

RDBMS Model

Data
Extraction

Data
Refinement

Fig. 1: Problem: Model-RDBMS data analysis requires user
expertise, imperative tasks, and data movement specification.

the contents and number of objects in an image, the semantics
of a string despite alternative spellings, typos, or tenses, all of
which make this task impractical if not impossible to specify
in traditional relational data analytics.

On the other hand, advancements in artificial intelligence
and machine learning have allowed increasingly complex
machine reasoning and performance in analyzing context-
rich data such as images or text. Models such as BERT [1]
and GPT [2] allow natural language processing, ResNet [3]
object localization and detection, often available as Foundation
Models [4] that are trained on web-scale data and further
customizable and re-trainable for the particular task. To use
those models, often based on Transformer architecture [5],
analysts would instantiate the particular model, input data, and
collect the output, using frameworks such as Tensorflow [6] or
Pytorch [7], often in an isolated, task-specific setting. With the
proliferation of embedding-based analytics, vector databases
have recently gained traction, offering embedding storage and
vector search, but with limited integration with traditional
relational analytics or available operations over data.

While machine learning models can transform context-rich,
multi-modal data into embeddings, coordinating the models
and data processing pipelines is manual and imperative. Sup-
pose an analyst wanted to analyze and extract insights from
an RDBMS and use some data as input to the models as in
Figure 1, which may be again input to an analytical query and
models in a more complex analytical processing pipeline. Such
a use case could combine the data from social media feeds with
user reviews and transaction and analytics in an online retailer
case, resulting in complex data processing pipelines, as the
data of interest and value may not necessarily be tabular only,
such as in canonical TPC-H, TPC-DS, or SSB [8] benchmarks.

ar
X

iv
:2

31
2.

01
47

6v
1

 [
cs

.D
B

]
 3

 D
ec

 2
02

3

0.135 0.654 0.345 0.848

0.548 0.870 0.984 0.156

0.498 0.148 0.165 0.958

0.318 0.844 0.283 0.418

0.046 0.651 0.162 0.658

0.156 0.598 0.968 0.411

Context-Rich Data
Human Reasoning

Embedding
Domain Mapping

Vector Feature Representation
Machine Reasoning

Fig. 2: Enabler: models embed context-rich data into common
tensor representation, allowing automated processing.

With two independent components, RDBMS with relational
data and Model with vector data, the user is back in the
center of imperative program specification and data movement.
This is not desirable, as a user must be an expert to fine-
tune the queries, potentially perform data integration, correctly
deploy and scale the queries to the hardware, orchestrate data
movement, and specify the correct operator orders to prevent
negatively impacting the performance. Decades of research
and engineering in query optimization and execution engines
allow hiding this complexity and is the key motivation to
extend and make relational algebra the basis of emerging
methods in multi-modal and context-rich processing.

Tightly integrated, expressive, and optimizable, hybrid
vector-relational data management is part of our broader effort
for the next generation of context-rich analytical engines [9].
The key enabler of this integration is that embedding models
transform the domain of context-rich data into tensors as a
common intermediate data representation, allowing strictly
specified operations over high dimensional vectors such as
similarity or analogies, providing a method to formalize
the processing of data while preserving context in neural
embedding space (Figure 2). A separation of concerns is
established: model selection handles the multi-modality, data
context, and semantics; the analytical engine optimizes and
processes context-free data and tensors via exposed operators.

Thus, traditional relational operators have their counter-
parts and new physical and logical properties with neural-
embedding-based vector processing. In this work, we in-
vestigate the case of context-enhanced join operation with
model-operator interactions, which takes place over vector
embeddings instead of only traditional relational data, and:

• Motivate and propose the capabilities of a context-
enhanced join operator in Section II, and introduce and
formalize the relational operator extension in Section III,

• Analyze the suitability of traditional join operator for the
task of vector data processing, and propose a cost model,
logical optimizations, and an alternative efficient tensor
formulation for parallel execution of a join operator for
processing neural embeddings in Section IV,

• Evaluate the physical and hardware optimizations we
propose in Section V, and benchmark the operator im-
plementation and characteristics in Section VI, showing
the over orders of magnitude impact on the execution
time and the importance of both logical and physical
optimizations of vector-based join operations.

...

Vector DataContextual Data Relational Data

Enriched Context Awareness

Model-Relational Hybrid Analytics

...

Relational Data

Fig. 3: Context-enhanced, model-relational analytics.

II. MOTIVATION

There have been significant efforts to enable machine-
automated understanding of context-rich data. The key idea
behind neural embeddings is that the model (µ) learns how
to transform the input data domain into high-dimensional
vector space (Figure 2), where relationships between the
data can be expressed using linear algebra expressions over
vectors. Embedding models (Eµ) take a human-understandable
context-rich domain and map it into a machine-operable high
dimensional vector (tensor) space.

A. Extended Functionality: Joins Over Contextual Data

Model-driven embeddings transform data previously opaque
to the relational data management system into context-free
vectors, as illustrated in Figure 3. The separation of concerns
between the model-driven context and uniform vector data
representation enables defining expressions over vectors and
tensors, such as semantic similarity using cosine distance,
or other vector arithmetic operations, such as finding word
analogies.

Broadly, this approach enables a fundamentally new way to
join context-rich data such as strings, documents, or images by
defining a corresponding model and vector expression. This
formulation is closer to the traditional relational join, as a
similarity predicate between two vectors can be formulated
as an expression. We describe particular use cases for such
context-extended relational data management systems.

1) Semantic-Based Similarity Operations
Instead of having a human-in-the-loop or an expert sys-

tem that performs dictionary-based or hard-coded rule-based
similarity operations, neural embeddings allow the automation
of similarity operations over many data types. A common
tensor representation defines similarity joins as join condition
expressions, such as cosine distance between the embedded
vectors. The models fine-tune the functionality and context.
After embedding the data and providing operators and expres-
sions over tensors such as cosine distance, model-independent
operations can be combined with the rest of the relational
query plan.

2) Online Data Cleaning
Strings or other context-rich data can be dirty or have

rich semantics. If we consider words or sentences, they may
have misspellings, alternative spellings, synonyms, or different
tenses that all have the same meaning. Specifying all the rules

2

User

Context-Awareness
via Embeddings

RDBMS Model

Logical + Physical
Optimizations

Extended Relational
Operators + Algebra

Fig. 4: Goal: Hybrid vector-relational operations are declara-
tive transformation primitives amenable to query optimization.

to unify context is error-prone and difficult, while word em-
beddings can encompass such similarity using representation
learning. Therefore, such operators can process such data on
the fly without prior cleaning and only the data of interest,
relying on embeddings and specified similarity thresholds for
data integration and potentially performing post-verification
steps.

3) Multi-Modal Data Processing
The data context is opaque to the execution engine,

while the model selection and parameters give context
and transform the data. By processing context-free tensors,
relational engines provide a common optimization framework
for multi-modal data driven by models, not relational engines.
Join operations are not all-encompassing but provide a step
towards unifying relational with model-driven data processing
under a declarative and optimizable model.

B. Integrating Vector Embeddings With Relational Operators

Data management systems support and simplify data pro-
cessing with research and systems contributions and features
such as transactions and concurrency control [10], [11], auto-
tuning [12], hardware-conscious implementations [13]–[17],
corresponding data structures [18], and query optimization
with declarative interfaces to abstract out the system complex-
ity from the end-user.

Instead of manual intermediate orchestration and system
integration to combine and analyze multi-modal and context-
rich data, involving different systems, data sources, and effi-
cient operator reimplementation, we investigate how to extend
traditional relational joins to support model-driven context
with minimal system intrusions and build on top of existing
judiciously modified abstractions. In particular, this means
that the vectors are simply another data type over which
expressions and operations can be defined. This makes index
structures designed to store, maintain, and perform similarity
search over tensors [19] compatible as physical access method
options. Similarly, recent work has formulated traditional re-
lational processing over tensors [20], where tensor processing
platforms are used as analytical RDBMS to benefit from
existing implementation while transforming the relational data
and operations into tensor representation.

While there has been prior work to integrate model in-
ference and learning with analytical engines [21], [22], our
goal is complementary as we focus on how we can extend
the relational model functionality with contextual data, as
illustrated in Figure 4. Similarly, we expose co-optimization
opportunities at logical, physical, and implementation levels
and fine-grained system interactions [9].

C. Holistic Optimization

Without loss of generality, suppose the data of interest are
strings and dates stored in an RDBMS. Generally, one can
consider other context-rich formats stored as binary objects
with other relational data. To allow semantic similarity op-
erations, such as matching strings that are synonyms, have
misspellings, or different tenses, word embedding models
transform strings into vectors, which are then comparable
using cosine distance. While RDBMS could execute regex-
like string expressions, mapping strings to embeddings allows
capturing broader classes of similarity within a model. Note
that the model can be trained and adapted for different datasets
to adjust the notion of similarity, which the analyst selects.

We are interested in joining two tables over strings, where
a condition over dates exists, making the queries selective
on both tables. In a declarative setting, query specification
requires embedding model information and the join condition
expression, and the selectivity information from the relational
column needs to propagate before the embeddings. Otherwise,
the whole interaction may result in the user eagerly mate-
rializing all the data as in Figure 1, performing expensive
embedding, and only then filtering. In more complex cases
and ad-hoc queries, imperative specification and optimization
are increasingly difficult.

Even with a declarative query with a logical plan with
correct selectivities and operator orders, the word embedding
model must interact with a join operator. Physical optimiza-
tion must address this interaction and account for the ten-
sor data format and the expressions suitable for comparing
high-dimensional data. For example, while an equi-join over
tensors could be implemented as a hash-join, more practical
embedding comparisons, such as cosine distance, require algo-
rithms such as nested-loop join for pair-wise comparisons and
consider the join, operation, and model data structure access
patterns in the algorithm and cost model.

Finally, from a hardware-conscious perspective, using
many-dimensional vectors with relational operators designed
and optimized for single-dimensional numerical data and ju-
dicious use of caches and memory hierarchy demands novel
tradeoffs. A 100-dimensional tensor embedding will change
the caching and execution patterns of traditional algorithms,
and model embedding can incur computational or data access
costs at a critical path of execution. Designing hardware-
conscious algorithms represents a direction driven by novel
model-database interactions. We aim to enable holistic op-
timization (Figure 4), starting from declarative specification
through logical and physical optimization, and finally, hard-
ware specialization to allow efficient execution.

3

Takeaway Neural embedding models transform the context-
rich, multi-modal data into a common (per-model) tensor
representation space. From the perspective of declarative re-
lational processing, models provide separation between data
semantics and context-less tensors as a model-parametrized
projection operator. From there, relational operators perform
operations such as cosine distance or vector transformations
over tensors, amenable to query optimization via common
abstractions and cost models that include model-operator in-
teractions and physical optimizations aware of tensors and
new computation and data access patterns co-designed for
hardware. We analyze these behaviors and propose solutions
that are aware of the new design space.

III. CONTEXT-ENHANCED RELATIONAL JOIN OPERATOR

In this section, we start with formalizing the proposal of a
relational operator extension to declaratively process context-
rich data stored along traditional relational data, such as strings
and text, that may be stored along with numerical or date
attributes. We call this hybrid model-relational processing.
This enhancement stems from the fact that the contextual data
may need to be transformed and processed differently. How-
ever, compatibility with relational algebra and optimizations
for processing purely relational data is required. Instead of
using separate systems and manually orchestrating the data
movement for processing using external programs or opaque
UDFs, we propose a set of operations needed to express a
join based on embedding the original data that is amenable to
traditional query optimization.

A. Neural Embeddings

Neural embeddings and representation learning are rich
and active research fields in machine learning. Images can
be embedded with models such as ResNet [3], audio with
PANNss [23], and text with Bert [1], word2Vec [24], Fast-
Text [25], [26]. Foundation Models [4] offer an increasingly
flexible way to specialize large models to a particular use case.
It is important to mention those models can be tuned, as they
learn representations from the training dataset through transfer
learning [27] (e.g., starting from one of the foundation models)
or re-training. In this work, we focus on and experiment
with string embedding models. However, as embeddings are
generally high-dimensional vectors, once in the embedding
domain, the processing of this data is model- and input-data-
type-agnostic, and the same principles and optimizations hold.

Processing embedded data allows automating semantic
similarity using cosine similarity (or another distance) be-
tween the vectors. More complex relationships in the vec-
tor space are possible, such as analogies, such as coun-
try capitals (Switzerland → Bern), (Greece →
Athens). The use of vectors necessitates interaction with lin-
ear algebra; therefore, the equations below outline definitions
of cosine similarity over vectors and matrices. We will use
them heavily in logical (Section IV) and physical (Section V)
optimization phases.

cos(θ) =
A ·B
∥A∥∥B∥

=

n∑
i=1

AiBi√
n∑

i=1

A2
i

√
n∑

i=1

B2
i

(Cosine Similarity)

a(1,d) · b(1,d)

∥a∥∥b∥
=

d∑
i=1

aibi√
d∑

i=1

b2i

√
d∑

i=1

b2i

(Vector-Vector)

a(1,d) ·B(m,d)

∥a∥∥B∥
=

[
a · bi

∥a∥∥bi∥

]m
i=0

(Vector-Matrix)

A(n,d) ·B(m,d)

∥A∥∥B∥
=

[[
ai · bj

∥ai∥∥bj∥

]n
i=0

]m
j=0

(Matrix-Matrix)

B. Model-Operator Interaction

In our example, we focus on context awareness over strings
so that common mistakes or semantically similar words are
automatically captured. Rather than imposing user to strictly
specify the rules for string similarity or clean the data ahead
of time, we enable words such as (barbecue, barbecues,
bbq, barbicue, grilling) that have similar semantics,
to automatically be used with relational operator predicates
without prior user intervention. The user should only specify
the embedding model and a threshold distance parameter over
cosine similarity calculation (Equation: Cosine Similarity).
Instead of comparing two strings in their original domain, they
are embedded. If the cosine similarity cos(θ) is larger than the
specified threshold, the two strings are similar and should be
matched. This avoids manual string processing and combining
techniques, such as Locality Sensitive Hashing, individually
limited to capturing only features such as misspellings.

A context-aware operator is supplemented with an embed-
ding model (µ). In this case, when an operator receives strings,
it embeds them and then performs the requested processing
in the vector domain. Models can be selected based on the
analyst’s needs, while often having desirable properties such as
the capability of training and adapting to the desired similarity
context. This interaction opens up design and optimization
choices, such as how to mask or minimize the cost of embed-
ding/model and overlap it with operator execution. We capture
this interaction through relational algebra (Subsection III-C)
and a cost model (Section IV) to allow holistic integration
with the remainder of the query plan.

C. Relational Operators and Algebra

We introduce the embedding operator (E) using a model
(µ), and relational algebra equivalences over selection (σ) and
θ-join (▷◁θ) operations, compatible with traditional relational
algebra definitions.

4

1) Selection
The selection operation applies predicate θ over input tuples

and returns only the tuples that satisfy the condition.

σθ(R) = {t ∈ R, θ(t)} (Selection with predicate θ)

To change the domain of input data, we allow mapping
the input tuples (or a projection over the tuples for simple
notation) using a model (µ) into vector space using embedding
(E) operation.

Eµ(R) = {t ∈ R, t 7→ µ(t)} (Embedding with model µ)

For completeness and decoding of the embeddings and
retrieving the context-rich data, an inverse operation E−1

should also be defined, which is the standard component of
encoder-decoder architectures, and semantically correct only
for the same model µ. Alternatively, a lookup table mechanism
can maintain this object-embedding mapping.

E−1
µ (Eµ(R)) = R (Decoding with model µ)

Combining embedding with selection allows the processing
of tuples with a mixture of data formats. Some attributes may
have traditional relational predicates, and some may require
embedding and predicates using different metrics (such as
cosine distance). Predicate pushdown and operation reordering
can happen as soon as the attributes that predicates operate
over are available.

σE,µ,θ(R)⇔ σθ(Eµ(R))⇔ σθE (Eµ(σθR(R))))
(E-Selection)

2) Join
The join operation takes two relations and joins them over

specified attributes using specified predicate conditions (θ-
join).

R× S = {(r, s), r ∈ R ∧ s ∈ S} (Cartesian Product)

Joins are amenable to predicate pushdowns and reordering.

R ▷◁θ S ⇔ σθ(R× S) (θ-Join Generalization)

We introduce embeddings to the generalized join definition
and provide equivalences. Embeddings can be observed as a
special projection operation that changes the domain.

R ▷◁E,µ,θ S ⇔ σE,µ,θ(R× S)

⇔
σθ(Eµ(R)× Eµ(S))⇔ Eµ(R) ▷◁θ Eµ(S)

(E-θ-Join)

Conversely, decoding the embeddings into their original
domain is possible across the plan (Equation: Decoding with
model µ).

Takeaway We formulate the context-enhanced operators by
extending relational operators and algebra to allow declarative
integration of embedding models with relational engines and
optimizers. A hybrid setting enables declarative and systematic
logical and physical optimizations, as depicted in the simple
query in Figure 5, while providing semantic awareness using
embeddings to separate concerns between models and engines.

R SR
Taken
date

Image
BLOB

01/02/23 [0101…]

01/12/23 [0110…]

05/12/23 [0111…]

Taken>02/12/23

Sim((Image), (Example))>=0.9

Image
[0111…]

Embed Image with model

(Image)
[0.04 0.02 0.5 …]

(Image)
[0.01 0.03 0.02 …]

Option 1: precomputed/cached
vector embeddings

Option 2: online
embedding

-Join

Fig. 5: Hybrid vector-relational query example, and the join
operator which is the focus of the optimizations in this paper.

IV. LOGICAL OPTIMIZATION

Starting from the extended algebra and operators, we present
the logical optimization driven by model-operator interaction
and tensors as a common intermediate data representation.
In contrast to traditional optimizations and relational operator
cost models, the two factors are different. First, since models
may be on the critical path of execution, model embedding
data access or computation time must be considered in addition
to the relational operator’s data access and processing cost.
Second, embeddings change the data domain from traditionally
atomic data types (prescribed by the 1st normal form) into
dense high-dimensional vectors, which could benefit from
optimizations in the domain of linear algebra. Still, regarding
the 1st normal form, embeddings are not structured data but
should be observed and processed atomically.

This changes the cost model and impacts the known char-
acteristics of algorithms. For example, suppose an embedding
is a 100-D vector. In that case, the cost of data movement
and cache locality characteristics (spatial and temporal) are
changed and must be evaluated in conjunction with the model’s
behavior and internal data structures.

A. Cost Model

We outline the abstract cost model for the context-enhanced
selection and join operations. For joins, we start by inves-
tigating the first available strategy: nested-loop join (NLJ).
It is important to note that we focus on evaluating exact
algorithms in our study. Since the distance we use is cosine
similarity, hash-based approaches would yield approximate
solutions similar to Locality Sensitive Hashing. Of course,
if we were to use equi-joins, it would be possible to use
traditional hash-joins, but there would be no benefit from
using embeddings. Still, nested loop joins are a good fit as
they can be formulated with good cache-locality, an important
performance factor (Section VI) that does not incur random
access over high dimensional data as every vector needs to be
pair-wise compared using cosine distance.

5

Batch/Matrix Operation, n

>

cos = >

Vector embedding dimensionality, d

Batch Size,
m

d

m

n

0

1

2

0 1 2 3 4

0

1

2

0 1 2 3 4

A
B

m

n

0

1

2

0 1 2 3 4

0,0 0,2 0,4

1,2

2,1 2,4

> [threshold]

{(0,0), (0,2),
(0,4), (1,2),
(2,1), (2,4)}
Batch Offsets

Result Set

1

2

1

2

Fig. 6: Matrix formulation of E-join allows scalable and cache-efficient execution over high-dimensional embeddings.

We outline the abstract cost model for selection and join
below, where R and S are relations, |R| is the cardinality of
relation R, A represents the data access cost, M represents
the model cost, and C is the computation cost.

Selection is an operation where input data is scanned,
embedded, and the condition is applied over every input tuple,
where each tuple incurs access, computation, and model cost:

Cost(σE,µ,θ(R)) = |R| · (A+M + C) (E-Selection Cost)

By naively extending the Nested-Loop Join (NLJ) operation,
it would scan both relations and perform pair-wise condi-
tion comparisons. In this implementation without considering
model-relational interaction, model access would be performed
per-processed tuple, which incurs quadratic model access
cost. Considering that embedding models are computationally
expensive, the following cost model shows the suboptimality:

Cost(R ▷◁E,µ,θ S) = |R|·|S|·(A+M+C) (E-NL Join Cost)

Instead, by considering the characteristics of the nested-loop
join, we observe that tuple embedding needs to happen only
once per tuple from both relations. This can be performed as
a precursor to the join operation or as a lazy embedding and
data materialization strategy. By observing this behavior, the
join results in a linear model cost with prefetching:

Cost(R ▷◁E,µ,θ S) = |R| · |S| · (A+ C) + (|R|+ |S|) ·M
(E-NLJ Prefetch Optimization)

This optimization is significant, as the model cost can span
from random access to a lookup table (several times slower
than sequential scan) to expensive computations over deep
neural networks (data transfer and computation). From another
perspective, if machine learning models are used as-a-service
and paid for per embedding, this cost model conversely results
in monetary savings compared to the potential suboptimal,
manual implementation. Expressing embeddings as relational
operator extensions allows logical optimization to occur in
conjunction with other operators in the hybrid relational-
embedding pipeline (selection pushdown, join reordering),
such that the cardinality of the most costly part of the
query plan will be reduced without explicit user intervention

or knowledge about specific interactions given a relational
operator.

B. Tensor Join Formulation

Since the computation of context-enhanced operators hap-
pens over dense high-dimensional embedding vectors, follow-
ing the vector and matrix definitions of cosine distance in
Subsection III-A, we present the tensor formulation of the dot
product. It is important to highlight that cosine similarity is
equivalent to the dot product with normalized input vectors.

The tensor formulation allows reasoning about the potential
decomposition of the problem for parallel and cache-efficient
execution beyond data parallelism, a basis for the physical
optimization (Section V). This enables efficient and well-
studied matrix-based algorithms for linear algebra in addition
to the traditional relational algorithms. We present the block-
matrix decomposition of the problem [28].

Dtv =

d∑
i=1

RtiSiv

 S11 . . . S1v

...
. . .

...
Sd1 . . . Sdv

→ S

R←

R11 . . . R1d

...
. . .

...
Rt1 . . . Rtd


 D11 . . . D1v

...
. . .

...
Dt1 . . . Dtv

→ D = RS

(Block Matrix Dot Product Decomposition [28])

Given a (|R| × dim) matrix R with t row partitions and
d column partitions, and a (dim × |S|) matrix S with d row
partitions and v column partitions that are compatible with
the partitions of R, dot product D = RS can be formed
block-wise, yielding D as a (|R| × |S|) matrix with t row
partitions and v column partitions. We consider S to be already
transposed if the initial data layout is as of R; in other words,
matrices R and S are compatible.

In particular, we partition the data along the tuple lines, not
the dimensions, as illustrated in Figure 6 1⃝. Transforming
the initial Nested-Loop Join into Tensor formulation enables
applying linear algebra optimizations, in particular, matrix

6

multiplication algorithms to achieve better cache utilization
of high-dimensional data, with well-understood parallelization
using block-matrix decomposition.

This is compatible with and extends recent research on
formulating relational operators for tensor processing run-
times [29]. The cache is utilized better as, in contrast to NLJ, a
matrix block (several vectors) can remain in the cache and be
reused over many operations. Block-matrix partitioning allows
for defining the processing granularity, which is significant
when memory footprint needs to be constrained, allowing
fine control of both the transfer and processing granularity of
cosine-distance-based similarity operations, all while reducing
redundant data transfers. In particular, this is a dense matrix
operation which is highly computationally and data access
optimized.

The next step is to map back to corresponding tuple pairs
that satisfy the threshold condition, as in Figure 6 2⃝. It
is sufficient to maintain the starting offsets of input relation
partitions, so the result set constitutes a potentially sparse
matrix of pairs that represent matrix batch offsets, driven
by the predicate selectivity. This result can be considered as
equivalent to using late materialization, and while sparse, it
is more compact as tuples of offsets represent unique tensor
identifiers. This is increasingly important when using novel
memory hierarchies with fast but limited memory, such as
high-bandwidth memory (HBM) [30].

Takeaway Formulating the cost model and alternative
equivalent execution plans using linear algebra allows tuning
the algorithms to the cost model and execution environment
parameters, as high-dimensional vectors and model processing
introduce data access, caching, and processing overheads. This
is a mandatory step that enables further logical and physical
optimizations, different from the ones suitable for traditional
relational operators that process only single-dimensional data.

V. PHYSICAL OPTIMIZATION

Modern data management systems are designed and opti-
mized to efficiently utilize available hardware resources [13],
[14], [17]. Equally, machine learning and linear algebra frame-
works are designed with physical optimizations to allow fast
and efficient execution over vector data [6], [7], [19], [31].

A. Data-Parallel Execution

To benefit from many-core architectures, we outline the
parallelization and hardware-conscious optimizations of the
join algorithm. In contrast to the traditional Nested-Loop Join
(NLJ) that allows exact cosine-distance-based joins, high-
dimensional embedding vectors take up more space in the
cache hierarchy. Consider a 32KB L1 cache, and we operate
over 4-byte values. Using a 100-dimensional embedding vec-
tor, the L1 cache can store only 80 values, in contrast to 8000
for the single-dimensional data type. This necessitates cache-
efficient implementation to benefit from the memory hierarchy.
Furthermore, computing cosine distance over vectors requires
more computation cycles than simply performing the regular

value-based operation. Thus, judicious use of hardware re-
sources is necessary to speed up data access and computation.

1) Data-parallelization strategies
Nested-Loop Join can be parallelized by partitioning the

input relations and using a heuristic of keeping the smaller
relation inside the inner loop to improve data and cache
locality. This is a traditional and well-known NLJ algorithm
implementation and optimization. In addition, we propose
using the matrix (tensor) formulation (Figure 6) using linear
algebra as an alternative to NLJ physical implementation.
Matrix multiplication to obtain a dot product and normalize the
vectors is embarrassingly parallel, in addition to having fine-
grained control over partition size. In contrast to NLJ, matrix
multiplication over dense vectors is a linear algebra operation
with a better cache locality [32], [33], improving the use of the
memory hierarchy in the presence of high-dimensional data,
and using efficient matrix multiplication algorithms and linear-
algebra frameworks.

2) CPU Hardware Support
Traditionally, CPUs benefit from the main memory access

locality. They are general-purpose compute units designed
to process full-precision data types (e.g., 32-bit and 64-bit)
that can support SIMD, such as with Intel AVX instructions.
Recent AVX-512 [34] instruction set has introduced hardware
support for half-precision data types, which allows processing
up to 32 16-bit floating point numbers in a SIMD register.
Furthermore, to support typical machine learning workloads,
beyond providing hardware support for half-precision data
types, CPUs such as 4th generation Intel Scalable Xeon
Processors introduced specialized instruction sets (AMX) to
accelerate matrix computations, along with limited capacity
High-Bandwidth memory [30], [35]. In general, specialized
instructions can accelerate the dense matrix computations.
At the same time, low-latency access to memory enables
optimizing the sparse matrix processing when processing the
elements that satisfy the join predicate. As even the main
memory is often limited or expensive, we will next discuss
how to constrain the memory requirements of the tensor-based
join formulation.

3) SIMD Vectorization
Executing linear algebra operations such as cosine distance

over dense vectors is compute-intensive and involves repeated
operations over every vector embedding element. Since op-
erations such as sum are repeated over every element of the
logical vector, it is a natural fit for using single-instruction
multiple-data instructions (SIMD). We use SIMD vectorization
supported by hardware to speed up the arithmetic operations
using fewer processing cycles using specialized registers and
compute units, in conjunction with data-parallel partitioning
for multi-core operator execution.

B. Constraining the Memory Requirements

The tensor join formulation given in Figure 6 assumes a
dot product operation between two matrices, a dense matrix
linear algebra operation. This will result in a large intermediate
state matrix of the same dimensions as the input relations.

7

B

Result

threshold

append
A

Buffer

Fig. 7: Matrix partitioning constrains the memory requirement.

Despite joins being typically selective, which might reduce the
matrix size, as in Figure 7, the intermediate state might still be
too big to store and compute at once. Computing this matrix
based on relations R and S would yield a |R|x|S| memory
requirement, which for 100k x 100k matrix that would store
FP32 floating point values results in 40GB. While this matrix
can be preserved to offset future computation, the primary
purpose is to compute and return the offsets that satisfy the
distance threshold requirement and return this result, which
is typically a sparse operation. Thus, even for modest input
relation sizes, this approach, in its current formulation, does
not scale well concerning the memory requirements.

To resolve this issue, the previously presented matrix de-
composition (Equation: Block Matrix Dot Product Decompo-
sition [28]) allows scheduling the computation in batches and
explicitly controlling the memory requirements based on the
desired intermediate matrix size. This trades off memory for
multiple invocations of the computation algorithm with smaller
matrices, effectively computing the large one while pruning
the intermediate sparse state after each matrix computation
and comparison with the similarity threshold condition.

We illustrate this in Figure 7, where two relations A and B
are joined over vectors. While the required memory require-
ment can be selectivity driven by other pushed-down relational
predicates (σA, σB), this might not fit the available buffer
budget. Thus, based on the available Buffer size, the input
data can be partitioned arbitrarily by decomposing the input
data along the vector tuple boundaries (not dimensions). The
strict |A|x|B| memory requirement becomes Buffer =
|part(A)|x|part(B)|, at the cost of several invocations
of the algorithm that might reduce the overall performance by
frequent data movement and lower cache locality.

Takeaway The physical operator design landscape encom-
passes implementation and hardware device characteristics-
based decisions. Model-operator interactions only enrich and
open a new design space. High-dimensional data contributes
to reduced capacity of the memory hierarchy in comparison to
common atomic data types found in relational data processing
and requires rethinking cache-local implementations. With the
increase in per-tuple compute cost, the strain is on both
memory and compute resources, which invites the use of
specialized hardware-conscious algorithms such as tensor join.

VI. EVALUATION

We start by demonstrating the functionality of using models
as a driver of context-enhanced relational operations through
the example of word embeddings. We then focus on the main
performance evaluation of the proposed logical and physical
optimizations, showing that a holistic approach is necessary
to obtain a performant join algorithm.

System We implement our prototype operators and evalua-
tion in a standalone system in C++ and use Intel AVX instruc-
tions for SIMD execution. Tensor formulation benchmarks use
Intel oneAPI Math Kernel Library for CPU-aware and efficient
BLAS-based linear algebra operations.

Hardware Setup We run the end-to-end and scalability
experiments on a two-socket Intel Xeon Gold 5118 CPU (2
x 12-core, 48 threads) and 384GB of RAM. All experiments
are with in-memory data; experiments with synthetic data use
the same random number generator seed for reproducibility.

A. Enhancing Operator Context via Word Embeddings

In our study, we use the example of word embeddings
that transform input strings into high-dimensional vectors. We
show the context-awareness functionality that word embed-
dings allow and note that embedding models can be fine-
tuned and replaced to support different notions of similarity.
Conversely, there are embedding models to support different
data modalities. Still, the intermediate data representation of
an embedding is a context-free vector that operators process
independently of the particular model, on top of which we
base our analysis. The proposed optimizations of our approach
are independent by design and principled in approach due to
the separation of concerns between the model, which produces
vectors, and the operator performing the join over context-free
vectors.

Embedding Model We use FastText [25], [26] as a model
(µ) for string embeddings, which has the desirable properties
that it can be trained and adapted to the context, it supports out
of vocabulary word embedding and is resilient to misspellings.
A context-aware operator is supplemented with an embedding
model. In this case, when an operator receives strings, it
embeds them using FastText and then performs the requested
processing in the vector domain.

Dataset We train a 100-dimension embedding model over a
subset of Wikipedia dataset [36], cleaned of stopwords, using
a subset of 1M strings from the dataset to test the similarity
using the model. We show the nearest vectors to sample words
as the strings are embedded into a high-dimensional vector
space. We then decode the vectors back into string and present
sample semantic matches in Table I. The model has learned
semantics and context from the Wikipedia dataset. To fine-tune
the model, it is possible to specialize the embedding models
with other domain-specific datasets.

It is important to mention that models allow automated
semantic matching, and the strings are not materialized or
retrieved during operations in an intermediate step. The com-
putation entirely happens on embedded data, and only positive
matches are retrieved. It is possible to decode the embeddings,

8

TABLE I: Semantic Matching using FastText trained on
Wikipedia dataset, 100-D embeddings, sample words.

Word Top-15 Model Matches

dbms rdbms, nosql, dbmss, postgresql, rdbmss, sql, dbmses, sqlite,
dataflow, ordbms, oodbms, couchdb, mysql, ldap, oltp

postgres postgre, postgresql, openvt, dbms, rdbmss, sqlite, dbmss, odbc,
backend, rdbms, rdbmses, postgis, openvp, couchdb, mysql

animal animals, felines, human, bovines, equines, dogs, nonhuman, fer-
rets, rabbits, chickens, anthropods, bovine, anthropod, mammal,
equine

dog dogs, poodle, doberman, sheepdog, puppies, dachshund, hound,
bullmastiff, retriever, pinschers, dobermans, puppy, bullmastiffs,
chickenhound, dachshunds

clothes dresses, clothing, garments, underwear, bedclothes, undergar-
ments, towels, underwears, scarves, shoes, nightgowns, cloth-
ings, bathrobes, underclothes

1k x 1k 10k x 1k 10k x 10k

101

102

103

104

105

3
8
9
.8

3
,4

1
9

3
6
,2

4
2
.6

2
8
0
.2

3
,0

2
3
.6

3
3
,2

2
6
.6

9

6
2

6
5
1
.2

4

3
5

2
6
9
.6

|R| x |S| tuples

Ti
m

e
[m

s]
-

lo
g 1

0
sc

al
e

NO-SIMD SIMD
Prefetch NO-SIMD Prefetch SIMD

Fig. 8: The impact of logical and physical optimization on
NLJ formulation. 100-D vectors, 48 threads.

for example, based on their offset in the input relation and
processing the embedding using standard encoder-decoder
model architecture.

This model aimed to detect synonyms, semantic and related
matches, and plural forms of the words without external user
specification. The only parameter in the case of a join with
cosine distance would be a single threshold parameter. This
allows relational operators normally operating over sample
strings (i.e., Word column in Table I) to perform matches with
strings on the right in the embedding domain without humans
in the loop or experts that would create and specify strict rules.
Such models can work by providing positive match examples
that could infer the correct cosine distance threshold parameter.

B. NLJ Formulation: Logical Optimization

As introduced in Section IV, we extend the traditional
relational join formulation by embedding vector processing
and retrieval. We evaluate the impact of logical optimization
of vector prefetching and physical optimization using SIMD
in Figure 8. This experiment validates the cost difference
between the naive join extension (Equation: E-NL Join Cost)

12 4 8 12 24 48
100

101

102

103

of threads

Ti
m

e
[m

s]
-

lo
g 1

0
sc

al
e 10k x 10k 100k x 100k

Fig. 9: Optimized NLJ formulation scalability, 100-D vectors.

and the one aware of the vector retrieval (Equation: E-
NLJ Prefetch Optimization). Not prefetching the embeddings
incurs quadratic model access costs validating the cost model,
resulting in orders of magnitude slower execution time.

This emphasizes the importance of analyzing, exposing,
and optimizing model-operator interactions. Despite using the
same hardware resources, including separate experiments with
and without SIMD, the main bottleneck is not computational
but access-pattern-related and algorithmic. With the wrong
holistic operator formulation, faster hardware cannot correct
the suboptimal formulation, as may happen with imperative
operator specification by a non-expert user. In this case, the
optimal strategy of prefetching the embeddings first and then
joining, despite having two separate tasks, allows faster execu-
tion time. SIMD instructions improve the execution time 2x,
indicating a computational bottleneck that additional hardware
instructions reduce, while this is not possible in the non-
prefetch, sub-optimal formulation.

In Figure 9, we show the scalability of the proposed logical
optimization with prefetching. We compare model prefetching
over two input relations sized 10k x 10k, and 100k x 100k,
which results in 108 and 1010 computations, respectively.
Notice the log-scale of the figure. Using the improved NLJ cost
model formulation and comparing the execution time between
the two input sizes, execution time scales linearly instead of
quadratically as in the non-optimized case and by an expected
factor of 102.

Takeaway. Logical operator optimizations and task or-
chestration are crucial to removing algorithmic bottlenecks.
Allocating more resources cannot scale and is wasteful before
resolving an algorithm’s logical costs and overheads.

C. NLJ Formulation: Physical Optimization

We focus next on the physical optimizations and demon-
strate the scalability of CPU execution and physical and logical
optimizations of NLJ formulation presented in Section V.
First, we investigate the impact of SIMD vectorization (Fig-
ure 10). We enable hyperthreading (24 physical, 48 logical
cores), affinitize threads to cores (2 threads will run on 1
physical core, 4 on 2, etc.), and run the NLJ formulation of 10k
x 10k relation size input with 100-dimensional embeddings.
The processor has AVX-512 registers that can simultaneously
fit 16 32-bit floating-point values simultaneously. The average
improvement is 5.36x, indicating non-computational overheads

9

1 4 8 12 16 20 24 28 32 40 48
0

5

10

15

20

of threads

Ti
m

e
[s

]
SIMD NO-SIMD

Fig. 10: NLJ formulation scalability and impact of SIMD, 10k
x 10k join input relations, 100-D vectors.

1 4 8 12 16 20 24 28 32 40 48
0

1

2

3

4

of threads

Ti
m

e
[s

]

Affinitized HTs (intertwine) Physical cores, then HTs

Fig. 11: NLJ formulation scalability with SIMD, prioritizing
physical cores, 10k x 10k input relations, 100-D vectors.

during vectorization but improved execution time using avail-
able hardware intrinsics.

We use two strategies to investigate the effect of affinitizing
threads to cores (Figure 11). First, we assign the physical cores
to the thread pool, followed by hyper-threads. Second, we
affinitize threads and hyper-threads to cores (2 threads will
run on 1 physical core, 4 on 2, until 24 cores/48 threads).
While affinitized strategy scales with added cores, physical
cores scale faster, and hyper-threads do not contribute to
improved execution time. This corroborates that dense vector
linear algebra is computationally heavy, and physical cores
cannot simultaneously benefit from scheduling a hyper-thread.
At the shift from physical to added logical cores, we see an
increase in the physical, then HTs strategy due to data-parallel
execution at 28 threads, as 28 partitions were assigned to
24 physical cores, creating 4 stragglers. Finally, using all the
available resources (after 24 threads), the result is the same.

Finally, we evaluate the impact of different input relation
sizes (in tuples) over 100-D, 32-bit embeddings over 48
threads and investigate the impact of physical and logical
optimizations using the NLJ formulation. In this experiment
(Figure 12), we investigate the effects of input sizes, number
of computations, and ordering of input relations of context-
enhanced NLJ implementation. First, the execution time
scales linearly with the number of computations/operations
performed, according to the cost model (Equation: E-NLJ
Prefetch Optimization). Second, we validate that to achieve
improved execution time due to cache locality, smaller relation
should still be the inner loop, as in the traditional nested-
loop-join, while using 100-D vectors for cosine distance

10
k x 10

k

10
0k

x 1k

1k
x 10

0k

1M
x 1k

1k
x 1M

10
k x 10

0k

10
0k

x 10
k

10
0k

x 10
0k

10
k x 1M

1M
x 10

k

103

104

269.6 264.4
319.8

2,410

3,957

2,8542,786.4

28,31030,902.4

22,593.6

|R| x |S| tuples

Ti
m

e
[m

s]
-

lo
g 1

0
sc

al
e

|108| |109| |1010| operations

Fig. 12: Optimized NLJ formulation with varying input rela-
tion sizes, 100-D vectors, 48 threads.

1 4 16 64 25
6 1 4 16 64 25

6 1 4 16 64 25
6

10−1

100

101

25600 2560000 256000000# FP32 Ops:
Vector #FP32:

Ti
m

e
pe

r
el

em
en

t
[n

s]

Vectorize-NLJ Tensor

Fig. 13: Physical optimization. The tensor strategy (green)
pays off in larger inputs compared to NLJ (blue).

computation. Despite more expensive per-vector computations,
data access patterns still play an important role, impacting our
experiment’s performance by up to ∼35% (at 1010 operations).

Takeaway. Logical and physical optimizations of the NLJ
formulation with vectors enable reducing the overheads by
orders of magnitude from the initial vector join extension. Still,
the approaches we proposed until now optimize for vector ex-
ecution without explicitly considering the high dimensionality
and similarity operations over individual tuples. The tensor
formulation, which we will evaluate next, addresses this issue.

D. Tensor Formulation: The Holistic Vector-Join Optimization

Instead of applying optimized computation on individual
vector operations in the NLJ, in Figure 6, we propose batching
multiple vector tuples together in a tensor join formulation
using optimized matrix computation. The key enabler and
difference is that BLAS matrix operations are highly optimized
for the cache locality that the simple NLJ imposed in its for-
mulation. We evaluate this physical optimization proposed in

10

1 4 16 64 25
6 1 4 16 64 25

6 1 4 16 64 25
6

10−1

100

101

25600 2560000 256000000# FP32 Ops:
Vector #FP32:

Ti
m

e
pe

r
el

em
en

t
[n

s]
Tensor-Fully-Batched Tensor-Non-Batched

Fig. 14: The impact of vector batching. Non-batched indicates
that one of the join inputs is processed one vector at a time.

Section V, evaluating whether the tensor formulation improves
the per-vector-element processing time. We compare two
strategies, running the fully optimized NLJ against the Tensor
formulation. For this, we vary two factors: the total number
of floating point numbers processed (#FP32 Ops) and how
many floating point numbers represent an individual vector
(vector dimensionality, Vector #FP32). Figure 13 summarizes
the findings, where three data clusters are based on the number
of operations, refined by individual vector size. In other words,
for the 25600 case with dimensionality 1, there are 25600/1
tuples joined, equally balanced in two relations, indicating√

25600/1 = 160 tuples per input relation. Similarly, to
obtain the number of tuples for the case of dimensionality
256,

√
25600/256 = 10. We use the per-FP32 breakdown as a

unifying metric across the input size and dimensionality. First,
we notice the benefit of vectorization with increased vector
size, where specialized hardware operations improve the per-
tuple performance. Second, pushing this boundary beyond per-
tuple-vector but to a whole tuple-vector-batch (Tensor), when
sufficient computation can benefit from the cache locality,
this approach significantly improves the execution time. In
particular, the Tensor approach was slower only in case there
were

√
25600/64 = 20 and

√
25600/256 = 10 tuples to join.

Batching the vectors together in the tensor formulation is the
key to reducing unnecessary data movement. We demonstrate
the impact of batching in Figure 14, where the BLAS-matrix
operations are used with one fully batched relation. At the
same time, the other is loaded vector-by-vector, repeated
as many times as there are tuples. An alternative is where
both relations are fully batched. While inefficiencies are not
noticeable with very small input sizes, batching becomes
increasingly significant for scalability as the input grows.

Still, as explained in Subsection V-B, batching too many
vectors together in large tensors simultaneously comes at
a prohibitive memory cost. We propose using mini-batches
partitioned across tuple boundaries (Figure 7) that can still
benefit from the improved linear algebra algorithms and data
locality. The impact of batching is presented in Figure 15. We
run the tensor join formulation over 100k x 100k, 100-D input
using 48 threads. The No Batch case runs the join on the

10
0k

x 10
0k

50
k x 50

k

10
0k

x 10
k

10
k x 50

k

5k
x 50

k

10
k x 10

k

10
k x 5k

5k
x 5k

100

101

102

Matrix Mini-Batch Size

R
el

at
iv

e
to

N
o

B
at

ch

Relative Slowdown Relative Decrease of Required RAM

Fig. 15: Batch size impact on memory requirements and
execution time. 100k x 100k, 100-D input (No Batch case).

10
k x 10

k

10
k x 1k

1k
x 1k

10
k x 10

0

1k
x 10

0

10
k x 10

10
0 x 10

0

10
0 x 10

10
x 10

100

102

104

106

Matrix Mini-Batch Size

R
el

at
iv

e
to

N
o

B
at

ch

Relative Slowdown Relative Decrease of Required RAM

Fig. 16: Fine-grained batch size impact on memory require-
ments and execution time. 10k x 10k, 100-D (No Batch case).

whole input at once. At the same time, the experiment focuses
on memory footprint reduction and the computational price
to pay when various mini-batches are used. While there is a
negligible relative slowdown due to some added data move-
ment and repeated operations, there is a significant benefit due
to the reduction of the necessary memory. However, taking
mini-batching to extremely small cases results in an NLJ
formulation performance where the computation boundary is
an individual vector. In such cases, the slowdown scales along
with the reduced memory requirement, as shown in Figure 16,
as the available computational resources (SIMD, cores) remain
idle, and explicit data movement becomes predominant.

Finally, we compare the NLJ with the Tensor formulation
end-to-end execution time in Figure 17. While the execution
time of both algorithms scales approximately linearly when
increasing the input relation size, the algorithm optimizations
enabled by batching vectors into tensors opened linear algebra-
based optimizations. This enables further execution time gains
at almost an order of magnitude improvement across various
input sizes.

Takeaway. Holistic optimization of the join algorithm with
vector inputs is necessary to enable fast and efficient compu-
tation. This led to removing model-operator overheads, tuning
the individual and batched vector computation and access
patterns aware of the underlying hardware capabilities.

11

10k x 10k
100k x 10k

100k x 100k
1M x 100k

1M x 1M

102

103

104

105

106

Ti
m

eo
ut

:
40

+
m

in
ut

es

3
5

3
6
6
.3

4

4
,3

0
3

5
5
,3

9
7
.3

4 4
.5

2
·
1
0
5

2
6
9
.6

2
,8

5
4
.8

2
8
,3

1
0

2
.5

·
1
0
5

|R| x |S| tuples

Ti
m

e
[m

s]
-

lo
g 1

0
sc

al
e

Tensor NLJ

Fig. 17: Tensor join vs. NLJ formulation, 100-D, 48 threads.

VII. RELATED WORK

This section outlines the related work and compares and
places our approach in the rich design space of prior research.

A. Machine Learning for Databases

Machine learning for databases has been a topic of re-
search where structural components of DBMS get enhanced
using findings from the ML community. Learned indexes [37]
avoid data structure traversal by learning the data distribution
information and optimizing data access. From a systems
perspective, using tensor processing frameworks for traditional
relational processing has also recently been proposed [20].

Our approach is similar as we propose using ML embedding
models to provide context to data traditionally opaque to rela-
tional DBMS. We propose a general framework for extending
and analyzing relational operators using novel model-database
interactions.

B. Databases for Machine Learning

On the other hand, databases for machine learning focus
on applying or integrating machine learning components with
systems. Frameworks such as Tensorflow [6] or Pytorch [7] are
efficient, hardware-conscious dataflow engines. There has been
recent work on developing vector-specialized databases [19]
typically based on indexes for efficient high-dimensional sim-
ilarity search [31]. Still, such engines often lack a DBMS’s
expressiveness, functionality, and analytical operations for
more complex data analysis, which would force users to
write imperative code to integrate different siloed system
components.

C. String Similarity Joins

We have proposed a join operator that functionally re-
sembles a string similarity join. Traditional string similarity
techniques require exact similarity specification using edit
distance or q-grams as token-based string similarity [38].
Similarly, locality-sensitive hashing techniques [39] exist for

approximate joins. These approaches are adequate for finding
misspellings and limited token-based differences.

In contrast, we propose using word embedding models
capable of identifying misspellings, different tenses, and se-
mantic similarity based on training and fine-tuning training
dataset and parameters [25], [26]. Through the separation of
concerns, from the perspective of DBMS, string similarity join
has a tensor-based input with cosine distance and threshold as
parameters. At the same time, the embedding model handles
the string semantics and context and transforms the input into
context-free embeddings for RDBMS to process. Furthermore,
our approach extends the notion of similarity to context-rich
data for which embedding models trained for correct similarity
semantics exist.

D. Representation Learning

The significant body of work in representation learning
is the key enabler of context-rich relational operators. It
allows for transforming the human-centric, context-rich data
representations into machine-centric formats amenable to auto-
mated processing. We combine ML-based embedding models
with relational operators and analyze end-to-end interactions,
from logical to physical optimizations. Such models allow
masking and transforming contextual data into embeddings
as ubiquitous data representations that can be processed by
extending RDBMS with tensor-based operators.

A rich research area in machine learning drives embedding
models that support other context-rich data formats beyond
strings, equally transforming the input into context-free em-
beddings. Enabling multi-modality through model-operator
interactions in a topic of future research, where models such
as ResNet [3] can be used for images or PANNs [23] for
audio processing. Models trained on web-scale data exist as
Foundation Models [4], that can be re-trained and adapted for
a specific task and dataset.

VIII. CONCLUSION AND FUTURE DIRECTIONS

Data management systems support analysts with modern
data processing tools. With strong results in automating
context-rich processing from the machine learning commu-
nity, such individual components would require imperative
integration in complex analytical data pipelines. We propose
instead a context-rich join operation that integrates embedding
processing with relational operators based on the key obser-
vation of the separation of concerns. Embedding models are
designed to handle context, while RDBMS needs to provide a
declarative context-free interface based on extended relational
algebra that allows logical and physical optimizations of the
interactions between operators and models. With the common
tensor data representation, we analyze the behavior of a join
operator and propose relational algebra extensions, logical
and physical optimizations, and introduce optimizations for
efficient execution. We evaluate our cost model and show
the impact holistic optimizations have on the execution time,
resulting in orders of magnitude differences across logical,
physical, and hardware optimizations.

12

REFERENCES

[1] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: pre-training
of deep bidirectional transformers for language understanding,” in
Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7,
2019, Volume 1 (Long and Short Papers), J. Burstein, C. Doran, and
T. Solorio, Eds. Association for Computational Linguistics, 2019, pp.
4171–4186. [Online]. Available: https://doi.org/10.18653/v1/n19-1423

[2] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-
Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler,
J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray,
B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever,
and D. Amodei, “Language models are few-shot learners,” in Advances
in Neural Information Processing Systems 33: Annual Conference on
Neural Information Processing Systems 2020, NeurIPS 2020, December
6-12, 2020, virtual, H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan,
and H. Lin, Eds., 2020.

[3] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in 2016 IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June
27-30, 2016. IEEE Computer Society, 2016, pp. 770–778. [Online].
Available: https://doi.org/10.1109/CVPR.2016.90

[4] R. Bommasani, D. A. Hudson, E. Adeli, R. B. Altman, S. Arora,
S. von Arx, M. S. Bernstein, J. Bohg, A. Bosselut, E. Brunskill,
E. Brynjolfsson, S. Buch, D. Card, R. Castellon, N. S. Chatterji,
A. S. Chen, K. Creel, J. Q. Davis, D. Demszky, C. Donahue,
M. Doumbouya, E. Durmus, S. Ermon, J. Etchemendy, K. Ethayarajh,
L. Fei-Fei, C. Finn, T. Gale, L. Gillespie, K. Goel, N. D. Goodman,
S. Grossman, N. Guha, T. Hashimoto, P. Henderson, J. Hewitt, D. E.
Ho, J. Hong, K. Hsu, J. Huang, T. Icard, S. Jain, D. Jurafsky, P. Kalluri,
S. Karamcheti, G. Keeling, F. Khani, O. Khattab, P. W. Koh, M. S.
Krass, R. Krishna, R. Kuditipudi, and et al., “On the opportunities
and risks of foundation models,” CoRR, vol. abs/2108.07258, 2021.
[Online]. Available: https://arxiv.org/abs/2108.07258

[5] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,”
in Advances in Neural Information Processing Systems 30: Annual
Conference on Neural Information Processing Systems 2017, December
4-9, 2017, Long Beach, CA, USA, I. Guyon, U. von Luxburg, S. Bengio,
H. M. Wallach, R. Fergus, S. V. N. Vishwanathan, and R. Garnett, Eds.,
2017, pp. 5998–6008. [Online]. Available: https://proceedings.neurips.
cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html

[6] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: a system for large-
scale machine learning.” in Osdi, vol. 16, no. 2016. Savannah, GA,
USA, 2016, pp. 265–283.

[7] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An
imperative style, high-performance deep learning library,” Advances in
neural information processing systems, vol. 32, 2019.

[8] P. E. O’Neil, E. J. O’Neil, and X. Chen, “The star schema benchmark
(ssb),” Pat, vol. 200, no. 0, p. 50, 2007.

[9] V. Sanca and A. Ailamaki, “Analytical engines with context-rich
processing: Towards efficient next-generation analytics,” in 39th IEEE
International Conference on Data Engineering, ICDE 2023, Anaheim,
CA, USA, April 3-7, 2023. IEEE, 2023, pp. 3699–3707. [Online].
Available: https://doi.org/10.1109/ICDE55515.2023.00298

[10] L. Zhang, M. Butrovich, T. Li, A. Pavlo, Y. Nannapaneni, J. Rollinson,
H. Zhang, A. Balakumar, D. Biales, Z. Dong, E. J. Eppinger, J. E.
Gonzalez, W. S. Lim, J. Liu, L. Ma, P. Menon, S. Mukherjee,
T. Nayak, A. Ngom, D. Niu, D. Patra, P. Raj, S. Wang, W. Wang,
Y. Yu, and W. Zhang, “Everything is a transaction: Unifying
logical concurrency control and physical data structure maintenance
in database management systems,” in CIDR 2021, Conference
on Innovative Data Systems Research, 2021. [Online]. Available:
https://db.cs.cmu.edu/papers/2021/cidr2021 paper06.pdf

[11] A. Kemper and T. Neumann, “Hyper: A hybrid oltp&olap main memory
database system based on virtual memory snapshots,” in Proceedings
of the 27th International Conference on Data Engineering, ICDE
2011, April 11-16, 2011, Hannover, Germany, S. Abiteboul, K. Böhm,

C. Koch, and K. Tan, Eds. IEEE Computer Society, 2011, pp. 195–206.
[Online]. Available: https://doi.org/10.1109/ICDE.2011.5767867

[12] A. Pavlo, G. Angulo, J. Arulraj, H. Lin, J. Lin, L. Ma, P. Menon,
T. Mowry, M. Perron, I. Quah, S. Santurkar, A. Tomasic, S. Toor,
D. V. Aken, Z. Wang, Y. Wu, R. Xian, and T. Zhang, “Self-
driving database management systems,” in CIDR 2017, Conference
on Innovative Data Systems Research, 2017. [Online]. Available:
https://db.cs.cmu.edu/papers/2017/p42-pavlo-cidr17.pdf

[13] T. Neumann, “Efficiently compiling efficient query plans for modern
hardware,” Proc. VLDB Endow., vol. 4, no. 9, pp. 539–550, 2011.
[Online]. Available: http://www.vldb.org/pvldb/vol4/p539-neumann.pdf

[14] P. Chrysogelos, M. Karpathiotakis, R. Appuswamy, and A. Ailamaki,
“Hetexchange: Encapsulating heterogeneous CPU-GPU parallelism in
JIT compiled engines,” Proc. VLDB Endow., vol. 12, no. 5, pp.
544–556, 2019. [Online]. Available: http://www.vldb.org/pvldb/vol12/
p544-chrysogelos.pdf

[15] T. Neumann and M. J. Freitag, “Umbra: A disk-based system with
in-memory performance,” in 10th Conference on Innovative Data
Systems Research, CIDR 2020, Amsterdam, The Netherlands, January
12-15, 2020, Online Proceedings. www.cidrdb.org, 2020. [Online].
Available: http://cidrdb.org/cidr2020/papers/p29-neumann-cidr20.pdf

[16] T. Kersten, V. Leis, A. Kemper, T. Neumann, A. Pavlo, and P. A.
Boncz, “Everything you always wanted to know about compiled
and vectorized queries but were afraid to ask,” Proc. VLDB
Endow., vol. 11, no. 13, pp. 2209–2222, 2018. [Online]. Available:
http://www.vldb.org/pvldb/vol11/p2209-kersten.pdf

[17] M. Zukowski, M. van de Wiel, and P. A. Boncz, “Vectorwise: A
vectorized analytical DBMS,” in IEEE 28th International Conference
on Data Engineering (ICDE 2012), Washington, DC, USA (Arlington,
Virginia), 1-5 April, 2012, A. Kementsietsidis and M. A. V. Salles, Eds.
IEEE Computer Society, 2012, pp. 1349–1350. [Online]. Available:
https://doi.org/10.1109/ICDE.2012.148

[18] S. Idreos, K. Zoumpatianos, B. Hentschel, M. S. Kester, and D. Guo,
“The data calculator: Data structure design and cost synthesis from
first principles and learned cost models,” in Proceedings of the
2018 International Conference on Management of Data, SIGMOD
Conference 2018, Houston, TX, USA, June 10-15, 2018, G. Das,
C. M. Jermaine, and P. A. Bernstein, Eds. ACM, 2018, pp. 535–550.
[Online]. Available: https://doi.org/10.1145/3183713.3199671

[19] J. Johnson, M. Douze, and H. Jégou, “Billion-scale similarity search
with gpus,” IEEE Trans. Big Data, vol. 7, no. 3, pp. 535–547, 2021.
[Online]. Available: https://doi.org/10.1109/TBDATA.2019.2921572

[20] A. Gandhi, Y. Asada, V. Fu, A. Gemawat, L. Zhang, R. Sen, C. Curino,
J. Camacho-Rodrı́guez, and M. Interlandi, “The tensor data platform:
Towards an ai-centric database system,” 2023. [Online]. Available:
https://www.cidrdb.org/cidr2023/papers/p68-gandhi.pdf

[21] Q. Lin, S. Wu, J. Zhao, J. Dai, F. Li, and G. Chen, “A comparative
study of in-database inference approaches,” in 38th IEEE International
Conference on Data Engineering, ICDE 2022, Kuala Lumpur, Malaysia,
May 9-12, 2022. IEEE, 2022, pp. 1794–1807. [Online]. Available:
https://doi.org/10.1109/ICDE53745.2022.00180

[22] J. M. Hellerstein, C. Ré, F. Schoppmann, D. Z. Wang, E. Fratkin,
A. Gorajek, K. S. Ng, C. Welton, X. Feng, K. Li, and A. Kumar,
“The madlib analytics library or MAD skills, the SQL,” Proc. VLDB
Endow., vol. 5, no. 12, pp. 1700–1711, 2012. [Online]. Available:
http://vldb.org/pvldb/vol5/p1700 joehellerstein vldb2012.pdf

[23] Q. Kong, Y. Cao, T. Iqbal, Y. Wang, W. Wang, and M. D.
Plumbley, “Panns: Large-scale pretrained audio neural networks
for audio pattern recognition,” IEEE ACM Trans. Audio Speech
Lang. Process., vol. 28, pp. 2880–2894, 2020. [Online]. Available:
https://doi.org/10.1109/TASLP.2020.3030497

[24] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” in 1st International Conference
on Learning Representations, ICLR 2013, Scottsdale, Arizona, USA,
May 2-4, 2013, Workshop Track Proceedings, Y. Bengio and Y. LeCun,
Eds., 2013. [Online]. Available: http://arxiv.org/abs/1301.3781

[25] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching
word vectors with subword information,” Trans. Assoc. Comput.
Linguistics, vol. 5, pp. 135–146, 2017. [Online]. Available: https:
//doi.org/10.1162/tacl a 00051

[26] B. Edizel, A. Piktus, P. Bojanowski, R. Ferreira, E. Grave, and
F. Silvestri, “Misspelling oblivious word embeddings,” in Proceedings
of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language

13

https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.1109/CVPR.2016.90
https://arxiv.org/abs/2108.07258
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.1109/ICDE55515.2023.00298
https://db.cs.cmu.edu/papers/2021/cidr2021_paper06.pdf
https://doi.org/10.1109/ICDE.2011.5767867
https://db.cs.cmu.edu/papers/2017/p42-pavlo-cidr17.pdf
http://www.vldb.org/pvldb/vol4/p539-neumann.pdf
http://www.vldb.org/pvldb/vol12/p544-chrysogelos.pdf
http://www.vldb.org/pvldb/vol12/p544-chrysogelos.pdf
http://cidrdb.org/cidr2020/papers/p29-neumann-cidr20.pdf
http://www.vldb.org/pvldb/vol11/p2209-kersten.pdf
https://doi.org/10.1109/ICDE.2012.148
https://doi.org/10.1145/3183713.3199671
https://doi.org/10.1109/TBDATA.2019.2921572
https://www.cidrdb.org/cidr2023/papers/p68-gandhi.pdf
https://doi.org/10.1109/ICDE53745.2022.00180
http://vldb.org/pvldb/vol5/p1700_joehellerstein_vldb2012.pdf
https://doi.org/10.1109/TASLP.2020.3030497
http://arxiv.org/abs/1301.3781
https://doi.org/10.1162/tacl_a_00051
https://doi.org/10.1162/tacl_a_00051

Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7,
2019, Volume 1 (Long and Short Papers), J. Burstein, C. Doran, and
T. Solorio, Eds. Association for Computational Linguistics, 2019, pp.
3226–3234. [Online]. Available: https://doi.org/10.18653/v1/n19-1326

[27] Y. Qi, D. S. Sachan, M. Felix, S. Padmanabhan, and G. Neubig, “When
and why are pre-trained word embeddings useful for neural machine
translation?” in Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computational Linguistics:
Human Language Technologies, NAACL-HLT, New Orleans, Louisiana,
USA, June 1-6, 2018, Volume 2 (Short Papers), M. A. Walker, H. Ji,
and A. Stent, Eds. Association for Computational Linguistics, 2018,
pp. 529–535. [Online]. Available: https://doi.org/10.18653/v1/n18-2084

[28] K. B. Petersen and M. S. Pedersen, “The matrix cookbook,” nov
2012, version 20121115. [Online]. Available: http://www2.compute.dtu.
dk/pubdb/pubs/3274-full.html

[29] D. He, S. C. Nakandala, D. Banda, R. Sen, K. Saur, K. Park,
C. Curino, J. Camacho-Rodrı́guez, K. Karanasos, and M. Interlandi,
“Query processing on tensor computation runtimes,” Proc. VLDB
Endow., vol. 15, no. 11, pp. 2811–2825, 2022. [Online]. Available:
https://www.vldb.org/pvldb/vol15/p2811-he.pdf

[30] V. Sanca and A. Ailamaki, “Post-moore’s law fusion: High-bandwidth
memory, accelerators, and native half-precision processing for cpu-local
analytics,” in Joint Proceedings of Workshops at the 49th International
Conference on Very Large Data Bases (VLDB 2023), Vancouver,
Canada, August 28 - September 1, 2023, ser. CEUR Workshop
Proceedings, R. Bordawekar, C. Cappiello, V. Efthymiou, L. Ehrlinger,
V. Gadepally, S. Galhotra, S. Geisler, S. Groppe, L. Gruenwald, A. Y.
Halevy, H. Harmouch, O. Hassanzadeh, I. F. Ilyas, E. Jiménez-Ruiz,
S. Krishnan, T. Lahiri, G. Li, J. Lu, W. Mauerer, U. F. Minhas,
F. Naumann, M. T. Özsu, E. K. Rezig, K. Srinivas, M. Stonebraker,
S. R. Valluri, M. Vidal, H. Wang, J. Wang, Y. Wu, X. Xue, M. Zaı̈t, and
K. Zeng, Eds., vol. 3462. CEUR-WS.org, 2023. [Online]. Available:
https://ceur-ws.org/Vol-3462/ADMS1.pdf

[31] J. Wang, X. Yi, R. Guo, H. Jin, P. Xu, S. Li, X. Wang, X. Guo, C. Li,
X. Xu, K. Yu, Y. Yuan, Y. Zou, J. Long, Y. Cai, Z. Li, Z. Zhang, Y. Mo,
J. Gu, R. Jiang, Y. Wei, and C. Xie, “Milvus: A purpose-built vector
data management system,” in SIGMOD ’21: International Conference
on Management of Data, Virtual Event, China, June 20-25, 2021, G. Li,
Z. Li, S. Idreos, and D. Srivastava, Eds. ACM, 2021, pp. 2614–2627.
[Online]. Available: https://doi.org/10.1145/3448016.3457550

[32] K. Goto and R. A. van de Geijn, “Anatomy of high-performance matrix
multiplication,” ACM Trans. Math. Softw., vol. 34, no. 3, pp. 12:1–12:25,
2008. [Online]. Available: https://doi.org/10.1145/1356052.1356053

[33] T. M. Smith, R. A. van de Geijn, M. Smelyanskiy, J. R. Hammond,
and F. G. V. Zee, “Anatomy of high-performance many-threaded
matrix multiplication,” in 2014 IEEE 28th International Parallel and
Distributed Processing Symposium, Phoenix, AZ, USA, May 19-23,
2014. IEEE Computer Society, 2014, pp. 1049–1059. [Online].
Available: https://doi.org/10.1109/IPDPS.2014.110

[34] “Intel® avx-512 - fp16 instruction set for intel® xeon®
processor based products technology guide.” [Online].
Available: https://networkbuilders.intel.com/solutionslibrary/
intel-avx-512-fp16-instruction-set-for-intel-xeon-processor-based-products-technology-guide

[35] N. Nassif, A. O. Munch, C. L. Molnar, G. Pasdast, S. V. Lyer, Z. Yang,
O. Mendoza, M. Huddart, S. Venkataraman, S. Kandula et al., “Sapphire
rapids: The next-generation intel xeon scalable processor,” in 2022 IEEE
International Solid-State Circuits Conference (ISSCC), vol. 65. IEEE,
2022, pp. 44–46.

[36] “Wikidata.” [Online]. Available: https://www.wikidata.org/
[37] T. Kraska, A. Beutel, E. H. Chi, J. Dean, and N. Polyzotis, “The case

for learned index structures,” in Proceedings of the 2018 International
Conference on Management of Data, SIGMOD Conference 2018,
Houston, TX, USA, June 10-15, 2018, G. Das, C. M. Jermaine, and
P. A. Bernstein, Eds. ACM, 2018, pp. 489–504. [Online]. Available:
https://doi.org/10.1145/3183713.3196909

[38] L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. Koudas, S. Muthukrishnan,
and D. Srivastava, “Approximate string joins in a database (almost)
for free,” in Proceedings of the 27th International Conference on Very
Large Data Bases, ser. VLDB ’01. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 2001, p. 491–500.

[39] H. Zhang and Q. Zhang, “Minjoin: Efficient edit similarity joins
via local hash minima,” in Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
ser. KDD ’19. New York, NY, USA: Association for Computing

Machinery, 2019, p. 1093–1103. [Online]. Available: https://doi.org/10.
1145/3292500.3330853

14

https://doi.org/10.18653/v1/n19-1326
https://doi.org/10.18653/v1/n18-2084
http://www2.compute.dtu.dk/pubdb/pubs/3274-full.html
http://www2.compute.dtu.dk/pubdb/pubs/3274-full.html
https://www.vldb.org/pvldb/vol15/p2811-he.pdf
https://ceur-ws.org/Vol-3462/ADMS1.pdf
https://doi.org/10.1145/3448016.3457550
https://doi.org/10.1145/1356052.1356053
https://doi.org/10.1109/IPDPS.2014.110
https://networkbuilders.intel.com/solutionslibrary/intel-avx-512-fp16-instruction-set-for-intel-xeon-processor-based-products-technology-guide
https://networkbuilders.intel.com/solutionslibrary/intel-avx-512-fp16-instruction-set-for-intel-xeon-processor-based-products-technology-guide
https://www.wikidata.org/
https://doi.org/10.1145/3183713.3196909
https://doi.org/10.1145/3292500.3330853
https://doi.org/10.1145/3292500.3330853

	Introduction
	Motivation
	Extended Functionality: Joins Over Contextual Data
	Semantic-Based Similarity Operations
	Online Data Cleaning
	Multi-Modal Data Processing

	Integrating Vector Embeddings With Relational Operators
	Holistic Optimization

	Context-Enhanced Relational Join Operator
	Neural Embeddings
	Model-Operator Interaction
	Relational Operators and Algebra
	Selection
	Join

	Logical Optimization
	Cost Model
	Tensor Join Formulation

	Physical Optimization
	Data-Parallel Execution
	Data-parallelization strategies
	CPU Hardware Support
	SIMD Vectorization

	Constraining the Memory Requirements

	Evaluation
	Enhancing Operator Context via Word Embeddings
	NLJ Formulation: Logical Optimization
	NLJ Formulation: Physical Optimization
	Tensor Formulation: The Holistic Vector-Join Optimization

	Related Work
	Machine Learning for Databases
	Databases for Machine Learning
	String Similarity Joins
	Representation Learning

	Conclusion and Future Directions
	References

